Characterization of voltage-dependent Ca2+ currents in identified Drosophila motoneurons in situ.

نویسندگان

  • Jason W Worrell
  • Richard B Levine
چکیده

Voltage-dependent Ca2+ channels contribute to neurotransmitter release, integration of synaptic information, and gene regulation within neurons. Thus understanding where diverse Ca2+ channels are expressed is an important step toward understanding neuronal function within a network. Drosophila provides a useful model for exploring the function of voltage-dependent Ca2+ channels in an intact system, but Ca2+ currents within the central processes of Drosophila neurons in situ have not been well described. The aim of this study was to characterize voltage-dependent Ca2+ currents in situ from identified larval motoneurons. Whole cell recordings from the somata of identified motoneurons revealed a significant influence of extracellular Ca2+ on spike shape and firing rate. Using whole cell voltage clamp, along with blockers of Na+ and K+ channels, a Ca2+-dependent inward current was isolated. The Drosophila genome contains three genes with homology to vertebrate voltage-dependent Ca2+ channels: Dmca1A, Dmca1D, and Dmalpha1G. We used mutants of Dmca1A and Dmca1D as well as targeted expression of an RNAi transgene to Dmca1D to determine the genes responsible for the voltage-dependent Ca2+ current recorded from two identified motoneurons. Our results implicate Dmca1D as the major contributor to the voltage-dependent Ca2+ current recorded from the somatodendritic processes of motoneurons, whereas Dmca1A has previously been localized to the presynaptic terminal where it is essential for neurotransmitter release. Altered firing properties in cells from both Dmca1D and Dmca1A mutants indicate a role for both genes in shaping firing properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Voltage-Dependent Ca Currents in Identified Drosophila Motoneurons In Situ

Worrell JW, Levine RB. Characterization of voltage-dependent Ca currents in identified Drosophila motoneurons in situ. J Neurophysiol 100: 868–878, 2008. First published June 11, 2008; doi:10.1152/jn.90464.2008. Voltage-dependent Ca channels contribute to neurotransmitter release, integration of synaptic information, and gene regulation within neurons. Thus understanding where diverse Ca channe...

متن کامل

Characterization of Voltage-Dependent Ca Currents in Identified Drosophila Motoneurons in situ. Running Head: Voltage-Dependent Ca Currents in Drosophila Motoneurons

Voltage-dependent Ca channels contribute to neurotransmitter release, integration of synaptic information, and gene regulation within neurons. Thus, understanding where diverse Ca channels are expressed is an important step towards understanding neuronal function within a network. Drosophila provides a useful model for exploring the function of voltage-dependent Ca channels in an intact system,...

متن کامل

The effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa

Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...

متن کامل

Modification of Nifedipine Inhibitory Effect on Calcium Spike and L-Type Calcium Current by Ethanol in F1 Neuron of Helix aspersa

There is strong evidence demonstrating that nifedipine dissolved in ethanol selectively inhibits only L-type Ca2+ current. In addition, acute ethanol exposure reduces voltage-dependent calcium currents. In the present study, we investigated the antagonistic effect of fixed concentration of nifedipine dissolved in different concentration of ethanol on L-type Ca2+ current. In a Na+-K+ free soluti...

متن کامل

Single-cell RT-PCR and functional characterization of Ca2+ channels in motoneurons of the rat facial nucleus.

Voltage-dependent Ca2+ channels are a major pathway for Ca2+ entry in neurons. We have studied the electrophysiological, pharmacological, and molecular properties of voltage-gated Ca2+ channels in motoneurons of the rat facial nucleus in slices of the brainstem. Most facial motoneurons express both low voltage-activated (LVA) and high voltage-activated (HVA) Ca2+ channel currents. The HVA curre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 100 2  شماره 

صفحات  -

تاریخ انتشار 2008